Перевод: с русского на все языки

со всех языков на русский

тогда... можно записать как

  • 1 тогда ... можно записать как

    Тогда... можно записать как-- Equation (...) can then be written

    Русско-английский научно-технический словарь переводчика > тогда ... можно записать как

  • 2 тогда

    Русско-английский научно-технический словарь переводчика > тогда

  • 3 записывать

    Русско-английский научно-технический словарь переводчика > записывать

  • 4 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 5 логические операции

    1. logical operations

     

    логические операции
    С какой-то степенью точности можно сказать, что математическая логика занимается изучением правил вывода определенных положений без конкретизации самих этих положений (безотносительно к их содержанию), примерно так, как геометрия связана с наукой о пространстве. Одно из основных понятий математической логики — высказывание. Не стремясь к излишней математической строгости, можно сказать, что высказывание — это выражение, относительно которого можно сделать вывод o его истинности или ложности. Например, «Ах!» — это не высказывание, а выражение — «Иван Иванович Иванов ~ телевизор» — высказывание, так как можно утверждать — оно ложно. Знак ~ заменяет здесь слово «эквивалент» и связывает два имени: «Иван Иванович Иванов» и «телевизор». Каждое из этих имен высказыванием не является, тогда как все выражение — высказывание. Над высказываниями можно производить определенные операции. Например, если заданы два высказывания, обозначенные логическими переменными A и B, то можно составить новое высказывание: «A и B». При этом связка «и» заменяется символом ?; тогда запишем «A ? B». Можно также составить выражение «A или B». Связка «или» обозначается с помощью символа v. Можно представить себе высказывание «из A следует B»: «A ==> B». Наконец, можно составить отрицание данного высказывания: «не A». Для операции отрицания используют целый ряд обозначений. ?? v? Например: ? А, ~А, ?. Придадим каждому из высказываний определенное значение истинности. Например, «А» = И, а «В» = Л, т.е. «А — истинно», а «В — ложно», тогда можно рассмотреть истинность перечисленных выше высказываний. Начнем с самого простого — с отрицания: если А — истинно, то «не А — ложно». Наоборот, если «А — ложно», то ?— истинно. Эти очевидные факты могут быть представлены в виде таблицы. Аналогично можно рассмотреть и другие операции. Можно рассмотреть еще одну Л.о. — «А тогда, и только тогда, когда В». Ее можно записать: (А <=> В) ? (А <=> В) ? (В ?А) Рассмотренная выше логика допускает только два значения истинности для высказывания — истинно и ложно, причем высказывание не может быть истинным и ложным одновременно. Поэтому она называется логикой с исключенным третьим. Важную аналогию можно установить, заменив условное обозначение «И» на единицу, а «Л» на нуль. Тогда окажется, что логика аналогична системе действий над двоичными числами, на основе которой работают все компьютеры.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > логические операции

  • 6 соотношение

    relation, correlation, ratio, relationship, formula
    Альтернативная форма данного соотношения получается... - An alternative form of this relation is obtained by...
    Более трудным и тонким соотношением является... - A more difficult and subtle relation is...
    Введем новые переменные х, у, z, заданные соотношениями... - Let us now introduce new variables x, y, z, given by...
    Дополнительное соотношение может получено, если мы заметим, что... - An additional relation can be obtained by noting that...
    Дополнительные соотношения для новых функций устанавливаются из ряда представлений в (4.1). - Additional relations for the new functions are established from the series representations in (4.1).
    Другое соотношение между этими величинами может быть получено (с помощью)... - Another relation between these quantities can be obtained by...
    Из анализа соотношения (1) очевидным образом следует, что... - It is evident from inspection of (1) that...
    Из нашего обсуждения соотношения (4), а также из того факта, что..., вытекает... - This follows from our discussion of (4) and the fact that...
    Из предыдущего соотношения ясно, что... - From the above relation it is clear that...
    Имеется простое соотношение между этими двумя величинами. - There is a simple relationship between these two quantities.
    Иногда бывает удобно использовать соотношения вида... - It is sometimes convenient to use relations of the form...
    Используя соотношение (3) между х а у, можно записать... - Making use of the relation between x and у given by (3), one may write...
    Используя эти соотношения, мы легко можем показать по индукции, что... - From these relations we can easily show by induction that...
    Используя это соотношение, легко подтвердить, что... - It is easily confirmed, using this relationship, that...
    Кроме этих основных соотношений мы должны также рассмотреть некоторые вспомогательные. - Aside from these basic relations, we must also consider certain auxiliary conditions.
    Наиболее простой путь удовлетворения этому соотношению это выбрать... - The simplest way to satisfy the relation is to choose...
    Наши первые результаты описывают соотношения между... - Our first results deal with the relations between...
    Невозможно далее упростить это соотношение, потому что... - It is not possible to simplify this relationship any further because...
    Обращаясь к соотношению (1), мы находим, что... - Referring back to (1), we find that...
    Относительно приведенного выше соотношения (2) можно сделать несколько замечаний. - A few remarks may be made in connection with (2) above.
    Очевидно, что выполнение соотношения (1) возможно лишь тогда, когда... - The fulfillment of (1), clearly, is possible only if... ; "i
    Повторное применение соотношения (1) дает соотношение (2). - Repeated application of (1) gives (2).
    Подобное соотношение существует между... - A similar connection exists between...
    Полученные соотношения можно было бы также применить к... - The relations obtained may also be applied to...
    Преимуществом соотношения (3) является то, что оно позволяет... - The advantage of (3) is that it permits...
    Соотношение именно такого типа должно ожидаться, так как... - A relationship of this sort is to be expected because...
    Соотношение между к и т дается формулой... - A relationship between к and m is given by the formula...
    Существенная разница между соотношениями (4) и (5) состоит в том, что... - The crucial difference between (4) and (5) is that...
    Чтобы вывести данное соотношение, мы отметим, во-первых, что... - In order to obtain this relation, we first note that...
    Чтобы установить желаемое соотношение, мы... - То establish the desired relationship, we...
    Чтобы установить соотношение (1), давайте... - То establish (1), let...
    Эти соотношения можно было бы применить, например, к... - These expressions may be applied, for example, to...
    Эти соотношения получаются наиболее просто (методом)... - These relations are obtained most simply by...
    Это замечательное соотношение. - This is a remarkable relation.
    Это позволяет нам установить естественное и полезное соотношение между... - This allows us to establish a natural and useful connection between...
    Это простое соотношение немедленно показывает, что... - This simple relation shows immediately that...
    Это соотношение имеет то преимущество, что... - This relation has the advantage that...
    Это соотношение можно также получить исходя из теории электромагнетизма. - This relation can also be obtained from the theory of electromagnetism.
    Это соотношение также показывает, что... - This relation also shows that...
    Это соотношение часто бывает полезным, поскольку оно обеспечивает... - This expression is often useful because it provides...
    Это соотношение, которое связывает значения переменной х с t. - This is the relation connecting x and t.
    Этот результат мог бы быть выведен прямо из соотношения (6). - This result could have been deduced directly from (6).

    Русско-английский словарь научного общения > соотношение

  • 7 экономико-математическая модель

    1. economico-mathematical model
    2. economic model

     

    экономико-математическая модель
    Математическое описание экономического процесса или объекта, произведенное в целях их исследования и управления ими: математическая запись решаемой экономической задачи (поэтому часто термины “модель” и “задача” употребляются как синонимы). Существует еще несколько вариантов определения этого термина. В самой общей форме модель — условный образ объекта исследования, сконструированный для упрощения этого исследования. При построении модели предполагается, что ее непосредственное изучение дает новые знания о моделируемом объекте (см. Моделирование). Все это полностью относится и к Э.-м.м. В принципе в экономике применимы не только математические (знаковые), но и материальные модели. Например, гидравлические (в которых потоки воды имитируют потоки денег и товаров, а резервуары отождествляются с такими экономическими категориями, как объем промышленного производства, личное потребление и др.) и электрические (в США была известна модель «Эконорама», представлявшая собой сложную электрическую схему, в которой имитировались экономические процессы). Но все эти попытки имели лишь демонстрационное применение, а не служили средством изучения закономерностей экономики. С развитием же электронно-вычислительной техники потребность в них, по-видимому, и вовсе отпала. Э.-м.м. оказывается в этих условиях основным средством модельного исследования экономики. Модель может описывать либо внутреннюю структуру объекта, либо, если структура неизвестна, — его поведение, т.е. реакцию на воздействие известных факторов (принцип «черного ящика«). Один и тот же объект может быть описан различными моделями в зависимости от исследовательской или практической потребности, возможностей математического аппарата и т.п. Поэтому всегда необходима оценка модели и области, в которой выводы из ее изучения могут быть достоверны. Во всех случаях необходимо, чтобы модель содержала достаточно детальное описание объекта, позволяющее, в частности, осуществлять измерение экономических величин и их взаимосвязей, чтобы были выделены факторы, воздействующие на исследуемые показатели. Например, формула, по которой определяется на заводе потребность в материалах, исходя из норм расхода, есть Э.-м.м. Если количество видов изделий обозначить через n, нормативы расхода — ai, количество изделий каждого вида — xi, то модель запишется так: где i = 1, 2, …, n. Кроме того, полезно записать условия, в которых она действительна, т.е. ограничения модели (например, лимиты на те или иные материалы). Строго говоря, расчет по такой формуле не даст точного результата: потребность в материалах может зависеть также от случайных изменений в размерах брака и отходов, от страховых запасов и т.д. Но в общем, она зависит именно от указанных двух видов величин: норм расхода материала и объемов выпуска продукции. Первые из них в данном случае называются параметрами модели, вторые — переменными модели. Такая модель называется описательной, или дескриптивной; она описывает зависимость расхода (потребности в материале), от двух факторов: количества изделий и расходных норм. Большое значение в экономике имеют оптимизационные модели (или оптимальные). Они представляют собой системы уравнений, равенств и неравенств, которые кроме ограничений (условий) включают также особого рода уравнение, называемое функционалом или критерием оптимальности. С помощью такого критерия находят решение, наилучшее по какому-либо показателю, например, минимум затрат на материалы при заданном объеме продукции, или, наоборот, максимум продукции (или прибыли) при заданных ограничениях по ресурсам и т.д. Например, можно попытаться найти такой план работы цеха, который при заданном объеме материалов (т.е. их расход не должен быть больше какой-то величины, допустим, B) гарантирует наибольший объем продукции. Единственное, что надо при этом знать дополнительно — цену единицы продукции — pi. Тогда модель будет записываться так при условии Кроме того, обязательно надо учесть, что искомые величины объемов производства каждого изделия не должны быть отрицательными: xi ? 0, i = 1, 2, …, n. Мы получили элементарную оптимизационную модель, относящуюся к типу моделей линейного программирования. Решив эту модель, т.е. узнав значения всех xi от 1-го до n-го, мы получим искомый план. Важное свойство Э.-м.м. — их применимость к разным, на первый взгляд непохожим ситуациям. Например, если в приведенном примере через ai обозначить нормы внесения удобрений, а через xi — размеры участков, то та же самая формула покажет общий объем потребности в удобрениях. Точно такую же формулу можно применить к расчету затрат семьи на покупку разных продуктов, и во многих других случаях. Модель может быть сформулирована тремя способами: в результате прямого наблюдения и изучения некоторых явлений действительности (феноменологический способ), вычленения из более общей модели (дедуктивный способ), обобщения более частных моделей (индуктивный способ). Подобные модели, в которых описывается моментное состояние экономики, называются статическими (от слова «статика»). Те же, которые показывают развитие объекта моделирования, — динамическими. Модели могут строиться не только в виде формул, как рассмотренные здесь (это называется аналитическое представление модели; см. Аналитическая модель), но и в виде числовых примеров (численное представление) и в форме таблиц (матричное представление), и в форме особого рода графов (сетевое представление модели). Соответственно различают модели числовые, аналитические, матричные, сетевые. Экономическая наука давно пользуется моделями. Одной из первых была модель воспроизводства, разработанная французским ученым Ф.Кенэ еще в XYIII в. А в XX в. первая общая модель развивающейся экономики была сконструирована Дж. фон Нейманом. Значительный опыт построения э.-м. моделей накоплен учеными СССР, применявшими их для анализа экономических процессов, прогнозирования и планирования во всех звеньях и на всех уровнях экономики, вплоть до планирования развития народного хозяйства страны в целом, особенно — перспективного. Принято подразделять Э-м.м. на две большие группы: модели, отражающие преимущественно производственный аспект экономики; модели, отражающие преимущественно социальные аспекты экономики. Разумеется, такое деление в значительной степени условно, поскольку в каждой из моделей в той или иной степени сочетаются производственный и социальный аспекты. Из моделей первой группы можно назвать: модели долгосрочного прогноза сводных показателей экономического развития; межотраслевые модели; отраслевые модели оптимального планирования и размещения производства, а также модели оптимизации структуры производства в отраслях. Из моделей второй группы наиболее разработаны модели, связанные с прогнозированием и планированием доходов и потребления населения, демографических процессов. Существует большое число классификаций типов Э.-м.м., которые, однако, носят фрагментарный характер. И это, по-видимому, неизбежно, так как нереально охватить все многообразие социально-экономических задач, объектов и процессов, описываемых различными моделями. Представленные в нашем словаре модели можно условно классифицировать следующим образом 1. Наиболее общее деление моделей — по способу отражения действительности: Аналоговая модель Иконическая модель (то же: портретная модель) Концептуальная модел Структурная модель Функциональная модель. 2. По предназначению (цели создания и применения) модели: Балансовая модель Дескриптивная модель (то же: Описательная) Имитационная модель Информационная модель Нормативная модель (то же: Прескриптивная модель), в т.ч. Оптимальная модель (то же: Оптимизационная модель). 3. По способу логико-математического описания моделируемых экономических систем: Аналитическая модель Вероятностная модель (то же: Стохастическая модель) Детерминированная модель Дискретная модель Линейная модель Математико-статистическая модель Матричная модель Нелинейная модель Непрерывная модель Модель равновесия Неравновесная модель Регрессионная модель Сетевая модель Числовая модель Эконометрическая модель. - дискретного выбора - непрерывной длительности (выживания) -логит-иодель -пробит-модель - тобит-модель.. 4. По временному и пространственному признаку: Гравитационная модель Динамическая модель (см. Динамические модели экономики) Модели с «бесконечным временем» Статическая модель Точечная модель Трендовая модель и др.. 5. По уровню моделируемого объекта в хозяйственной иерархии: Глобальная модель Макроэкономическая модель (то же: Агрегатная модель) Модели мезоэкономики Микроэкономическая модель 6. По внутренней структуре модельного описания системы: Автономная модель Закрытая модель Комплекс моделей Многосекторная модель (многоотраслевая, многопродуктовая) Однопродуктовая модель Открытая модель Система моделей (в том числе многоуровневая или многоступенчатая). 7.. По сфере применения. Выше было указано на необозримость областей применения Э.-м.м.; поэтому мы не даем здесь их перечисления, а отсылаем к соответствующим статьям словаря: например, о прогнозных моделях — к статье Прогнозирование, об отраслевых — к статье Отраслевые задачи оптимального планирования развития и размещения производства, и т.д. Наиболее развитая типология социально-экономических задач и моделей представлена в кн.: Вилкас Э.Й., Майминас Е.З. Решения: теория, информация, моделирование. — М.: “Радио и связь”, 1981.При разработке приведенной выше условной классификации учитывались материалы этой книги.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > экономико-математическая модель

См. также в других словарях:

  • АРИФМЕТИКА — искусство вычислений, производимых с положительными действительными числами. Краткая история арифметики. С глубокой древности работа с числами подразделялась на две различные области: одна касалась непосредственно свойств чисел, другая была… …   Энциклопедия Кольера

  • Уравнение Дирака — релятивистски инвариантное уравнение движения для би спинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено П. Дираком в 1928. Содержание 1 Вид уравнения 2 Физический смысл …   Википедия

  • Дирака уравнение — Уравнение Дирака квантовое уравнение движения электрона, удовлетворяющее требованиям теории относительности, применимое также для описание других точечных фермионов со спином 1/2; установлено П. Дираком в 1928. Содержание 1 Вид уравнения 2… …   Википедия

  • АЛГЕБРА — раздел элементарной математики, в котором арифметические операции производятся над числами, значения которых заранее не заданы. Преимущества алгебраических методов обусловлены использованием достаточно компактных символических систем, что внешне… …   Энциклопедия Кольера

  • МАТЕМАТИЧЕСКИЙ АНАЛИЗ — раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и …   Энциклопедия Кольера

  • ОПЕРАТОРЫ — в квантовой теории, понятие, широко используемое в матем. аппарате квант. механики и квант. теории поля. О. служат для сопоставления с определ. волновой функцией (или вектором состояния) y другой определ. ф ции (вектора) y . Соотношение между y и …   Физическая энциклопедия

  • КВАНТОВАЯ МЕХАНИКА — (волновая механика), теория, устанавливающая способ описания и законы движения микрочастиц (элем. ч ц, атомов, молекул, ат. ядер) и их систем (напр., кристаллов), а также связь величин, характеризующих ч цы и системы, с физ. величинами,… …   Физическая энциклопедия

  • Гигантское магнетосопротивление — Гигантское магнетосопротивление, гигантское магнитосопротивление[1], ГМС (англ. Giant magnetoresistance, GMR)  квантовомеханический эффект, наблюдаемый в тонких металлических плёнках, состоящих из чередующихся ферромагнитных и… …   Википедия

  • Теорема о равнораспределении — Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… …   Википедия

  • Закон равнораспределения — Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… …   Википедия

  • Эквипарциальная теорема — Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»